Dipole RC

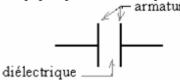
I- Les condensateurs:

1)Définition d'un condensteur :

KKK'D7%'A5

Un condensateur est constitué de deux conducteurs en regard appelés armatures séparés par un isolant qu'on appelle diélectrique (comme l'air, le verre, le plystyrène, le plastique ou le papier paraffiné...etc.qui sont des substances isolantes).

Symbole d'un condensateur :



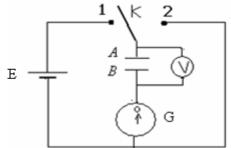
Les armatures du condensateur peuvent prendre divers formes géométrique.

2) Charge et décharge d'un condensteur :

a) Charge d'un condensateur:

■ Expérience:

On utilise un générateur source de tension continue de force éléctromotrice E et on réalisé le montage suivant:



On utilise dans cette expérience un galvanomètre ou un ampèremètre à zéro central.

On bascule l'interrupteur K à la position (1).

On observe que l'ampèremètre indique le passage d'un courant électrique durant un temps très court et que le voltmètre indique que la tension aux bornes du condensateur U_{AB}=E. On dit que le condensateur est <u>chargé</u> et le courant électrique qui passe dans le circuit s'appelle <u>courant de charge</u>.

■Interprétation:

Le courant de charge résulte d'un déplacement des électrons de l'armature A vers l'armature B du condensateur, et à cause de l'existence du diélectrique entre les armatures, les électrons s'accumulent sur l'armature B.

L'armature A perd le même nombre d'électrons gagnés par l'armature B et condensateur devient chargé.

On appelle charge "q" du condensateur, la valeur absolue de la quantité d'électricité que porte chaque armature. $q = q_A = -q_B$ Une fois chargé, le condensateur conserve la charge électrique "q" sur ses armatures et la tension $u_{AB} = E$ entre ses bornes, même lorsqu'on le débranche.

b) Décharge d'un condensateur:

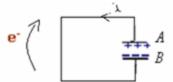
■ Expérience:

Lorsque le condensateur est chargé on bascule l'interrupteur K à la position (2). On constate la déviation de l'aiguille du galvanomètre dans le sens contraire pendant un temps très court et le voltmètre indique une annulation rapide de la tension aux bornes du condensateur.

■Interprétation:

En déplaçant l'interrupteur à la position (2) on relie les armatures entre elles .Les électrons accumulés sur l'armature B reviennent à l'armature A et un courant de décharge apparait dans le circuit dans le sens inverse du courant de charge.

Circuit de décharge



lorsque le condensateur se décharge la tension entre ses bornes s'annule.

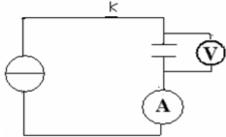
3) Relation entre la Charge et l'intensité du courant :

L'intensité du courant électrique est le débit de porteurs de charges qui traverse la section du conducteur par unité de temps.

- Dans un courant continue on a: $I = \frac{q}{t}$
- ullet Dans un courant variable on a: i=
- Dans le cas du condensateur on a : $i = \frac{dq_A}{dt} = \frac{dq_A}{dt}$

4) Relation entre la Charge et la tension d'un condensteur : (charge du condensateur avec un courant constant)

On réalise le montage de la figure suivante en utilisant un générateur de courant (qui débite un courant électrique constant quelle que soit la tension entre ses bornes). Puis on ferme l'interrupteur et en même temps on déclenche le chronomètre.

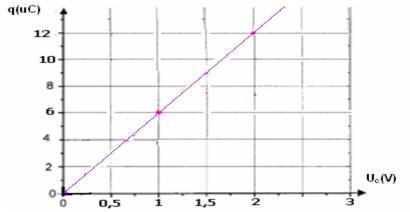


L'ampèremètre indique l'intensité du courant dans le circuit $I_o = 0.3 \mu A$. On mesure la tension entre les bornes du condensateur après chaque cinq secondes et en utilisant la relation : $q=I_o$.t, on détermine la charge q du condensateur à chaque instant.

Tableau des valeurs:

t(s)	0	5	10	15	20	25	30	35	40	45
U _c (V)	0	0 ,25	0,5	0,75	1	1,25	1,5	1,75	2	2,25
g(uC)	0	1,5	3	4,5	6	7,5	9	10,5	12	13,5

Représentation de la courbe d'évolution de la charge q en fonction du temps:



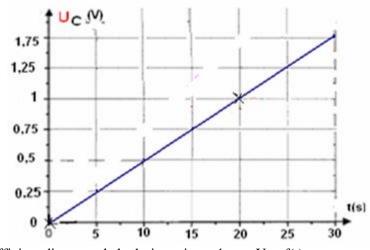
La charge q du condensateur est proportionnelle à la tension entre ses bornes, le coefficient de proportionnalité est une constante qui caractérise le condensateur notée **C**, est appelée : <u>capacité du condensateur</u>, elle s'exprime en farad (F).

$$q = C.U_c$$

Graphiquement la capacité du condensateur utilisé dans cette expérience est égale au coefficient directeur de la droite qui représente $q=f(U_c)$:

$$C = \frac{\Delta q}{\Delta U_C} = \frac{(13.5 - 1.5) \times 10^{-6} \, C}{(2.25 - 0.25) V} = 6.10^{-6} \, F = 6 \, \mu F$$

Autre méthode: La courbe qui représente la tension Uc aux bornes du condensateur en fonction du temps et une fonction linéaire



Donc on a : U_c =k.t , k est le coefficient directeur de la droite qui représente Uc =f(t).

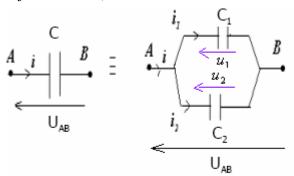
$$k = \frac{\Delta Uc}{\Delta t} = \frac{1-0}{20-0} = 0.05 V/s$$

On a:
$$C = \frac{q}{U_c} = \frac{I_o t}{k \cdot t} = \frac{I_o}{k} = \frac{0.3 \cdot 10^{-6}}{0.05} = 6.10^{-6} F \implies q = C.U_c$$

III- Association des condensateurs:

1) Association en parallèle:

Soient deux condensateurs de capacités C₁ et C₂ montés en parallèle et soit C la capacité du condensateur équivalent (qui peut les remplacer et jouer leur rôle)



En appliquant la loi des nœuds au point A, on a:

$$i = i_1 + i_2$$
 \Rightarrow $q = q_A + q_B$

et on a: $q = C.u_{AB} + q_2 = C_2.u_2 + q_1 = C_1.u_1$

$$_{\texttt{donc:}} C.u_{AB} = C_1 u_{AB} + C_2 u_{AE}$$

Or dans un circuit en dérivation toutes les branches Sont soumises à la même tension :

$$u_{AB} = u_1 = u_2$$

$$\mathrm{donc:} \ C.u_{AB} = C_1.u_{AB} + C_2.u_{AB}$$

$$C \, \dot{\boldsymbol{u}}_{\text{AB}} = \boldsymbol{u}_{\text{AB}} (\boldsymbol{C}_1 + \boldsymbol{C}_2) \quad \Rightarrow \quad \boldsymbol{C} = \boldsymbol{C}_1 + \boldsymbol{C}_2$$

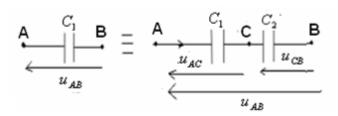
La capacité C du condensateur équivalent à un ensemble de condensateurs de capacités C₁, C₂,C₃......C_n montés en

parallèle est : $C = \sum_{i=1}^{i=n} C_i$

Remarque : le montage en parallèle sert à faire augmenter la capacité du condensateur.

2) Association en série:

Soient deux condensateurs de capacités C₁ et C₂ montés en série et soit C la capacité du condensateur équivalent (qui peut les remplacer et jouer leur rôle)



Selon l'additivité des tensions on a:

$$u_{AB} = u_{AC} + u_{CB} \quad (1)$$

et on a:
$$\begin{cases} u_{AB} = \frac{q}{C} & \Rightarrow \quad q = C \ u_{AB} \\ \\ u_{AC} = \frac{q_1}{C_1} & \Rightarrow \quad q_1 = C_1 u_{AC} \\ \\ u_{CB} = \frac{q_2}{C_2} & \Rightarrow \quad q_2 = C_2 u_{CB} \end{cases}$$

$$u_{CB} = \frac{q_2}{C_2} \implies q_2 = C_2 u_{CS}$$

En remplaçant dans (1) $\frac{q}{C} = \frac{q_1}{C_1} + \frac{q_2}{C_2} \qquad (2)$

Or les condensateurs montés en série portent la même charge électrique : $q=q_1=q_2$ donc la relation (2) devient

$$\frac{q}{C} = \frac{q}{C_1} + \frac{q}{C_2} \qquad \text{d'où} \quad \frac{q}{C} = q/(\frac{1}{C_1} + \frac{1}{C_2}) \qquad \Rightarrow \qquad \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

 $La \; capacit\'e \; C \; du \; condensateur \; \'equivalent \; \grave{a} \; un \; ensemble \; de \; condensateurs \; de \; capacit\'es \; C_1, \; C_2, C_3......C_n \; mont\'es \; \ref{eq:capacit\'es} \; (C_1, C_2, C_3, \ldots, C_n) \; (C_1, C_2, C_2, \ldots, C_n)$

en série est: $\frac{1}{C} = \sum_{i=1}^{i=n} \frac{1}{C}$

Remarque : le montage en parallèle sert à faire diminuer la capacité du condensateur.

III-Réponse d'un dipole RC à un échelon de tension:

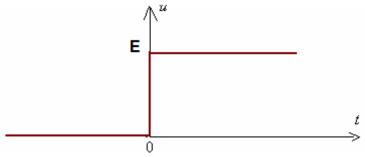
1) Réponse d'un dipole RC à un échelon montant de tension : (charge d'un condensateur):

a)Equation différentielle:

On dit qu'un dipole est soumis à un échelon montant de tension, si la tension entre ses bornes varie instantanément d'une valeur nulle à une valeur constante E.

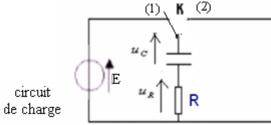
Echelon montant de tension

 $\dot{a} t = 0$ la tension u = 0àt >0 la tension u = E



On monte en série un conducteur ohmique de résistance R et un condensateur de capacité C et on obtient un dipôle RC puis on le soumis à un échelon de montant de tension à l'aide d'une source de tension continue.

On ferme l'interrupteur à t=0



On a:
$$i = \frac{dq}{dt}$$

et: $q = C.u_C$
et: $u_R = Ri$

On représente les différentes tensions en respectant la convention récepteur et la convention générateur.

- ■En convention récepteur la tension u et le courant i sont de sens contraire.
- ■En convention générateur la tension u et le courant i sont de même sens.

En appliquant la loi d'additivité des tensions on a:

$$u_R + u_C = E \implies Ri + u_C = E \implies R \cdot \frac{dq}{dt} + u_C = E \qquad \text{donc: } R \cdot \frac{d(C \cdot u_C)}{dt} + u_C = E \implies R \cdot C \cdot \frac{du_C}{dt} + u_C = E$$

On pose : $\tau = R.C$ constante de temps du dipôle RC.

La relation précédente devient :

$$\tau \times \frac{du_c}{dt} + u_c = E$$

C'est l'équation différentielle que vérifie la tension aux bornes du condensateur durant la charge.

b)Solution de l'équation différentielle:

La solution générale de cette équation différentielle est de la forme : $u_C(t) = A.e^{-\alpha.t} + B$ sa derivée: $\frac{du_c}{dt} = -\alpha.A.e^{-\alpha.t}$ (1)

Les constantes : A ,B et α se déterminent en remplaçant et <u>utilisant les conditions initiales</u>.

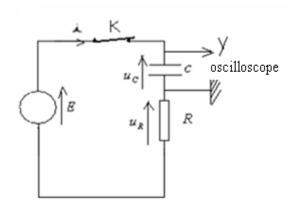
En remplaçant la solution u_c et sa dérivée, l'équation différentielle s'écrit : $-\tau \cdot \alpha \cdot A \cdot e^{-\alpha \cdot t} + A \cdot e^{-\alpha \cdot t} + B = E$

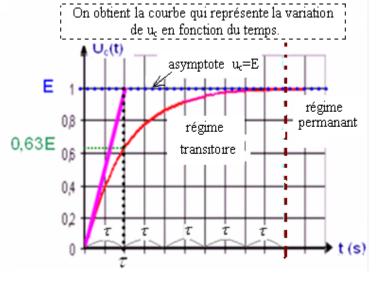
$$A.e^{-\alpha.t}(1-\tau.\alpha) + B = E \qquad \text{d'où:} \qquad \begin{cases} B = E \\ 1-\tau.\alpha = 0 \end{cases} \qquad \text{et:} \quad \alpha = \frac{1}{\tau} \text{ donc: la solution} \text{(1) devient: } \quad u_C(t) = A.e^{-\frac{t}{\tau}} + E \quad \text{(2)}$$
 Ensuite pour déterminer A on utilise les conditions initiales qui sont: à t=0, u_c=0 qu'on remplace dans solution (2)

qui devient : $0 = A \cdot e^0 + E$ d'où: $0 = A \cdot + E \implies A = -E$

Donc la solution de l'équation différentielle : $u_C(t) = E.(1 - e^{-\frac{t}{\tau}})$ avec: $\tau = R.C$

On peut visualiser la tension aux bornes du condensateur en utilisant un oscilloscope à mémoire,





On constate l'existence de deux régimes:

- -Un régime transitoire durant lequel la tension aux bornes du condensateur varie de 0 à E.
- Un régime permanent au cours duquel la tension aux bornes du condensateur devient constante : u_c=E.

Remarque: Au bout de est petite plus que la charge est rapide. τ Le condensateur devient chargé. Plus que 5τ

c)Unité de la constante de temps:

Montros que le produit RC est homogène à un temps.

L'analyse dimensionnelle conduit à : $[\tau] = [R] \times [C]$

on a:
$$u_R = Ri$$
 \Rightarrow $R = \frac{u_R}{i}$ donc: $[R] = [U][I]^{-1}$

on a:
$$u_R = Ri$$
 \Rightarrow $R = \frac{u_R}{i}$ donc: $\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} I \end{bmatrix}^{-1}$ et on a: $\begin{cases} q = I.t \\ q = c.u_c \end{cases}$ \Rightarrow $I.t = C.u_c$ \Rightarrow $C = \frac{I.t}{u_c}$ donc: $\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} U \end{bmatrix}^{-1}$

 $\tau = R.C$ done: $[\tau] = [R].[C] = [U].[I]^{-1}.[I].[t].[U]^{-1} = [t]$ La constante de temps :

d)Détermination graphique de la valeur de: τ

<u>1ère</u> méthode: En remplaçant $t = \tau$ dans l'expression de la tension on obtient : $u_C(\tau) = E.(1 - e^{-1}) \approx 0.63E$

et par lecture graphique, le temps correspondent à cette valeur est $t = \tau$. (voir courbe)

La tangente à la courbe à t=0 se coupe avec l'asymptote u_c=E à l'instant

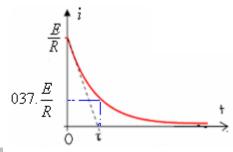
e) Expression de l'intensité du courant dans le circuit:

On a d'après la loi d'additivité des tensions: $u_R + u_C = E$ avec: $u_R = R.i$ donc : $u_c = E - u_R$ $\Rightarrow R.i = E - u_C$

$$R.i = E - E(1 - e^{-\frac{t}{\tau}}) = E.e^{-\frac{t}{\tau}} \implies i = \frac{E}{R}.e^{-\frac{t}{\tau}}$$

Autre méthode:

$$i = \frac{dq}{dt} = \frac{d(Cu_{\epsilon})}{dt} = C\frac{du_{\epsilon}}{dt} = C\frac{d\left[E(1-e^{-\frac{t}{2}})\right]}{dt} = C\left[\frac{E}{\tau}\right]e^{-\frac{t}{2}}$$
$$= C\frac{E}{R.C}e^{-\frac{t}{2}} = \frac{E}{R}.e^{-\frac{t}{2}}$$



f)Détermination graphique de la valeur de: 7

<u>1ère</u> méthode: En remplaçant $t = \tau$ dans l'expression de l'intensité on obtient : $i = \frac{E}{R} e^{-1} \approx 0.37 \frac{E}{R}$

et par lecture graphique, le temps correspondent à cette valeur est $t = \tau$. (voir courbe)

2^{ème} méthode: La tangente à la courbe à t=0 se coupe l'axe des temps à l'instant (voir courbe) $t = \tau$

Réponse d'un dipole RC à un échelon descendant de tension: décharge d'un condensateur:

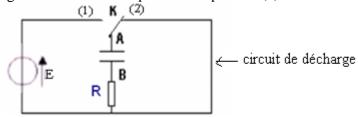
a)<u>Equation différentielle:</u>

On dit qu'un dipole est soumis à un échelon descendant de tension, si la tension entre ses bornes varie instantanément d'une valeur constante E à une valeur nulle.

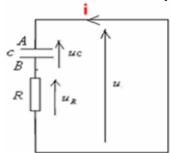
Echelon descendant de tension:

- $t \le 0$ La tension est constante u=E
- à t > 0 La tension est nulle u=0

Lorsque le condensateur est chargé on bascule l'interrupteur K à la position (2)



On représente les différentes tensions en respectant la convention récepteur et la convention générateur.



En appliquant la loi d'additivité des tensions on a:

d'une part : u=o

d'aure part : $u = u_R + u_c$

donc: $u_R + u_c = 0$

 $\Rightarrow Ri + u_c = 0$

avec: $i = \frac{dq}{dt} = \frac{d(C.u_c)}{dt} = C.\frac{du_c}{dt}$

donc la relation précédente devient

$$R.C.\frac{du_c}{dt} + u_c = 0$$

On pose : $\tau = R.C$

donc on a:

$$\tau \cdot \frac{du_c}{dt} + u_c = 0$$

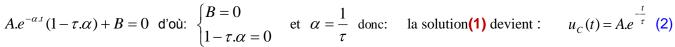
C'est l'équation différentielle que vérifie la tension aux bornes du condensateur durant la décharge.

b)Solution de l'équation différentielle:

La solution générale de cette équation différentielle est de la forme : $u_C(t) = A.e^{-\alpha.t} + B$ sa dérivée : $\frac{du_c}{dt} = -\alpha.A.e^{-\alpha.t}$ (1)

Les constantes : A ,B et α se déterminent en remplaçant et <u>utilisant les conditions initiales</u>.

En remplaçant la solution u_c et sa dérivée, l'équation différentielle s'écrit : $-\tau \cdot \alpha \cdot A \cdot e^{-\alpha \cdot t} + A \cdot e^{-\alpha \cdot t} + B = 0$

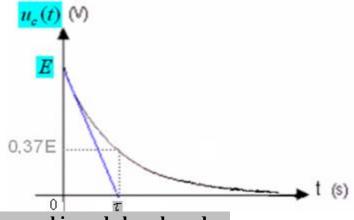


Ensuite pour déterminer A on <u>utilise les conditions initiales</u> qui sont : à t=0, u_c=E qu'on remplace dans solution (2)

qui devient : $E = A.e^0 \implies A = E$

Donc la solution de l'équation différentielle : $u_C(t) = E.e^{-\frac{t}{\tau}}$ avec: $\tau = R.C$

La courbe qui représente uc=f(t)



c)Détermination graphique de la valeur de τ

<u>1ère</u> méthode: En remplaçant $t = \tau$ dans l'expression de la tension on obtient : $u_c = E.e^{-\frac{t}{\tau}} = E.e^{-1} = .0,37E$ et par lecture graphique, le temps correspondent à cette valeur est $t = \tau$. (voir courbe)

2^{ème} méthode: La tangente à la courbe à t=o se coupe avec l'asymptote u_c =E à l'instant $t = \tau$

d) Expression de l'intensité du courant dans le circuit: On a d'après la loi d'additivité des tensions: $u_R + u_C = 0$ d'où : $u_c = -u_R$ avec: $u_R = R.i$ donc : $u_c = -R.i$

$$\Rightarrow E.e^{-\frac{t}{\tau}} = -R.i$$

d'où:
$$i = -\frac{E}{R} \cdot e^{-\frac{t}{\tau}}$$

Autre méthode:

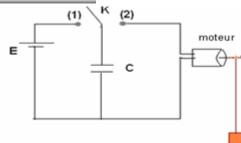
$$i = \frac{dq}{dt} = \frac{d\left(Cu_{c}\right)}{dt} = C\frac{du_{c}}{dt} = C\frac{d\left[Ee^{-\frac{t}{x}}\right]}{dt} = C\left[-\frac{E}{\tau}\right]e^{-\frac{t}{x}} = -C\frac{E}{R.C}e^{-\frac{t}{x}} = -\frac{E}{R}e^{-\frac{t}{x}}$$

Le signe(-) est due au fait que le courant de décharge a le sens contraire de celui de charge.

IV-Enérgie électrique emagasinée dans d'un condensateur:

Expérience:

On réalise le montage suivant:



On bascule l'interrupteur K à la position (1) et on le laisse un temps suffisant pour que le condensateur soit chargé puis on le bascule à la position (2).

On constate que le moteur fonctionne et le corps suspendu au fil monte d'une hauteur h.

La montée du corps et sa réception d'une énergie de potentielle s'explique par l'existence de l'énergie électrique qui a été reçue par le condensateur pendant la charge.

Donc le condensateur peut emmagasiner l'énergie électrique pour la restituer au moment du besoin.

2) Expression de l'énergie emmagasinée dans un condensateur:

Soit E_e l'énergie électrique emmagasinée dans un condensateur:

La puissance $p = \frac{dE_e}{dt}$ donc: $dE_e = p.dt$ par intégration on a : $E_e = \int_0^{u_c} p.dt = \int_0^{u_c} C.u_c.dt = C \int_0^{u_c} .u_c.dt = \frac{1}{2}.C.u_c^2$

L'énergie électrique emmagasinée dans un condensateur est donnée par l'une des relations suivantes:

$$\xi_e = \frac{1}{2}C.u_C^2 = \frac{1}{2}.\frac{q^2}{C}$$

vendredi 23 novembre 2018